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SEEARINGEFFECTIVENESSOF INTWEML STEFENDIG

~ Rob~t F. Crawford and Ckmles Libove

SUMMARY

Values of coefficients for defining the effectiveness of integral
stiffeners in resisting shesz deformations of the plate of which they
are an titegral part are presented for a wide range of proportions of
rectsmgular stiffeners with cirmilar fillets. The coefficients sre
evaluated by the use of sm electrical analog comput-. Formulas are
given in which these coefficients may be employed to calculate the
elastic constants associated with the twisting and shearing of integraUy
stiffened plates, either directly, as in the case of simple longitudinal
or transverse stiffening, or through the intmediate evaluation of pre-
viously defined shearing-effactiveness p==eters j as ti the case of more
ccunplicatedstiff=er patterns. The fillet r~ius is shown to contribute
appreciably to the degree of penetration of the stresses from the skin
into the stiffeners. !Dms, through the use of suitable ccmibinationsof’
rib proportions and fWet radii, simple longitudinal or transverse
integal stiffening can be made to contribute to the ov=all shear
stiffness of the plate-stiffener combination.

INTRODTJXION

The effactiveness of integrally stiffened plates, as demonstrated
in references 1 to k, is in part due to the fact that the stresses in
the skin of the plate are conducted fito the integral.stiffeners. Even
under simple loadings, a complicated stress distribution within the
cross section is produced, end in consequence the evaluation of the eks-
tic constsnts for the plate-stiffener conibinationis difficult.

Formulas for the thirteen elastic constants of plates with integral
stiffeners and a method for analytically obtatiing upper and lower limits
on the parameters of the formulas are presented in reference 4. In some
cases the differences between the constants calculated by the upper-
and lower-limit assumptions sre substantial. For exsn@e, upper-limit
shesx stiffnesses calculated in reference 4 were from I-2p=cent to
32 percent ~eater than the calculated lower-limit stiffnesses.
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In the present paper a more refined analysis is made of the sheering “-
effectiveness of integral stiffening. The approach used is that of
imposing a quasi-shear deformation upon a repeating element of a plate w
with simple longitudinal or transverse stiffening (see fig. 1) and then
solving the equations of elasticity associated with the imposed deformation.
The method of solution is similer to the method used in solving the torsion
problem of pages =8 to 263 of reference ~. This approach requires the
solution of Lapkce’s equation over the cross section of the repeating
element as shown in figure 2. Solutions for a wide range of proportions
of’rectangukr stiffeners with circular fillets were obtained with a
General Electric Analog Field Plotter (ref. 6) which was modifiedby
the NACA to suit the needs of this particular problem. This modified
field plotter is similar in operation and principle to an electrical

—

analog computer described in reference 7.

Results of this malysts sre presaxted in the form of tabulations
and curves giving coefficients from which the shear~ effectiveness of
the integral stiffener may be evaluatd. These coefficients may be
used with the formulas of reference 4 for the calculation of the plate
elastic constants; if the shesring stiffness of a plate with simple
longitudinal or transverse stiffening is required, however, it may be
determined more directly from the given coefficients through the use of
formulas presented herein.

SYMBOLS

Plate Dimensions

%
area of perpendicular cross

b~ kngth.of repeating

bv height of rib above

E total height of rib

eknent

section of rib, sq in.

of integrally stiffened plate, in.

plate, in.

and plate, ts+~, h.

h z-distance from y-sxis to boundary cdef

‘s lengthof plate between fillet and end of

b~ -a~-~
, in.

2

of specimen (fig. 2)

repeattig element,

1~ height of rib above fillet radius, ~ - rW, i-n.
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CT=

radius of fillet, in.

thickness of skin or @-ate, in.

thickness of rib or web, in.

Forces and Elastic Constants

coupling elastic constant associated with couplhg between
twist and shesr and defined by eqwtions (1) and (2), in.

twisting stiffness relative to x- and y-directions defined
by equation (1), in-lb

twisting stiffness relative to x- ad y-directions defined
by equation (3), in-lb

shear modulus of material, psi

sh~ stiffness of plate in xy-plane deftied by equation (2)?
lb/in.

shesr stiffness of plate in xy-plane defiued by equation (4),
U/in.

torsion constant defined by equation (27)

torston constant for sections shown in figure6(a)

btensity of resultant twisting torque, lb

intensity of resultant shearing force acting in plane z = t 2,d
lb/in.

cor@ing elastic constant associated with ‘couplingbetween twist

and shesx defined by equations (3) and (4), lb-l

Special Symbols Used h Shearing-EffectivenessAnalysis

coupling coefficient deftied by equation (A30)

coupling coefficient defined by equation (~~ )
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c% coupling coefficient defined by equation (A26)

‘w titensity of resultant sheering force acttig in y-direction
in plane z = tS/2, lb/in.

‘m intensity of resultant shearing force acting in x-dtiection
in plane z= t~/2, lb/in.

J coefficient of twisting stiffness defined by eqution (6)

P boundary value of stress function or bounds.ryvalue of
electrical potential field (fig. 2)

q coefficient of shearing stiffness defti~ by equation (A22)
sad determined by equation (A24)

‘1 integral of stress function definedby eqyation (A35)

‘2 integral of stress function definedby equation (A36)

‘XY intensity of resultant twisting torque acting on planes per-
pelldiCUIIWtO X-aXiS, lb

%x intensity of resultant twisting torque acting on planes
P=’P-~’dar to y-aXi8, lb ..

a’ coefficient used in reference 4 to locate effective centroid
of part of rib for resisting twisting deformation

P’ coefficient used h reference 4 to define effectiveness of rib
in resisting shear deformation

B coefficient used in reference 4 to define effectiveness of rib
in resisting stretching h its transverse direction

8 magnitude of pure shear distortion imposed upon repeating
element of integrally stiffened plate (fig. 3), iu.

General f$nibols

u,V,w displacements m x-, y-, and z-dtiections, respectively, in.

X,y,z orthogonal COOTdi31EiteSj z measured normal to plane of plate,
and x and y measured in plane of plate

.

w
.

--

w
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XY

E.,n

#

if

components of

average 7W

by equation

components of

components of

components of

shear strain

over length of repeating element defined

(A21)

normal strati

normal stiess, psi

shear stress, psi

transformed orthogonal coordinate system defined in
equations (22)

stress function defined by equations (A6)

warping function definedby eq=tion (Al)

STATEMENT OF FROBLE4

The force-distortion reb.tionshirm for the twisting and shesring of
rectangular orthotropic inte~all.y st-iff=ed plates ~vti their sxe=
of principal stiffness parallel or perpendicular to the sides of the
plate (figs. 1 and 2) maybe written, as noted inref~ence 4, in two
forms as follow:

or

‘.

4

%=+&+ckNxv
a2w ‘w

7= ‘-2ckax&+~

a2w %Y+m~=g XY

%
‘w =2% +—

w %

(1)

(2)

(3)

(4)
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elastic constsmts D , G
Wv

, and T ~e re~ted to Dk$

by the following formulas:

‘w =2Dk

%&
‘w =Dk + Ck2Gk

(!5)

These elastic constants can be evaluated in terms of the three coef-
ficients j, q, and c which express the effectiveness of the stiffeners
in resist~ce to twisting, to shearing, and to coupling between twisting
and shearing, respectively. For plates with simple longitudinal or
transverse integral stiffemxrs, the equations for the elastic constants
in terms of these coefficients are determined as follows:

(6)

Ck = - ct~ (8)

‘w =GJtS3

GjqtS
G
v= 2c2q+ j

T
c!=—

GJt~2

(9)

(10)

-.
.

-h

.

(11) _

The determination of the coefficient j is presented subsequently in the
text and that of the coefficients q snd c, in the appendixi
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Expressions for these elastic constsats have also
reference 4 for plates with stiffeners in a vsrie@ of
effectiveness of the stiffeners for resisting twist*

7

been d=ived h
patt=ns, where the
and shearing iS

expressed in terms of two parameters a’ and j3’. A method for the

evaluation of u’ was given in reference 4, based on the work of refer-
ence 8, but no basis for the evaluation of B‘ was then available.

(The suggestion was made in reference 4 that ~‘ be ass- equal to p.
Subse uent experimentation has shown that for a wide range of propotiions,

7j3=78 P’.) Values of a’ and B’ may now be determined, howev-,
in termsof j and q; thus

d=;/-- (u)

-1pl=L
P

(13)
Aw s-%

where

% 1‘s bw %+21 Yc rw2—=.
bsts bs tS ts ( )( )J-r q

(14)

Equations (12) and (13) are derived in the appendix.

The problem considered in the present paper is the evaluation of j,
% - c. Actual values ot these coefficients are obtatied herein for
only rectsmgdsx stiffeners with circulsr fil.lets,but the methmis of
analysis sre applicable to stiffeners of any cross section.

PROCEDURES FOR DETERMINATION OF COEFFICIENTS

Determination of j

References 8 and 9 give torsion constants for sections such as those
illustrated in figures 1 and 2. T5e coefficient j used in the evaW-
ation of the elastic constants of titegrslllystiffened plates is related
to the conventional torsion constant K as follows:

(15)
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stiffness of a few plates .ofdifferent
.
.

cotiirm the results of references 8
and 9. No further analysis of the twisting stiffness of integral~ b
stiffened plates was therefore made. Further information on the evalu- .

ation of j is given in the section entitled I*Resultsand Applications.”

Determination of q and c

A quasi-shear deformation was imposed on the-repeating element of
the integrally stiffened plate as shown in figure 3, and the stress
resultants required to produce this deformation (fig. 4) were found.
!lhedetails of this analysis are presented in the appendix W the
resulting equations are found to be

and.

% = - %%y

where q and c are given by

%/%
q=

2$+s1

(16)

(18)

in which bs; ~, 7s, rw, ts, and ~ sre dtiensions of the plate

(see fig. 2), and S2 and S2 are integrals of a stress function #

deftied in the appendix. The integrals are

‘1 =
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and

In oral- to evaluate these integrals,
analogy. AS is shown in the appendix, the
satisfy Laplace’s equation,

The application of
(see ref. 7) shows
potentisl field in

use was made of an electrical
stress function # must

(20)

Ohm’s law to a thin conducthg sheet of’material
tit a “function V, which describes sm electrical
the sheet, must satisfy hplace’s equation,

(21)

Accordingly, a potential field was set up in a conducting sheet over a
shape related linearly to the shape of the cross section under consider-
ation (see fig. 2) by electrically duplicattig the bourdary conditions
on the stress function. A self-balancing potentiometer was used to
measure values of the potential over the conducting sheet as shown in
figure 5. The desired integrals ‘1 - ~2 were then computed by

numerically titegrattig the potential readtigs over the cross section.

The potentiomet- used was a modified General Electric Amalog Field
Plotter (ref. 6), and the conducting sheet was me L !Mledeltos pap=.
This paper was sufficiently homogeneous to give good results with the
large-scale cross sections used, but = ad@tment was reqpired to take
into account a 7-percent deviation Nom the maxirmm resistance which
existed between the directions of principal resistsmce. This directional
property was corrected for by distorting the figure according to the
transformation

(-)Rz
Y=q—

%

(22)
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where ~ and Rz are electrical resistances
.

in the y- and z-directions, -

respectively. The actual potential field in the sheet is described by

a2v Rz 3*V
--#+ 5-=o (23)

Thus, a potential value measured from the distorted figure is equivalent
to a potential at a corresponding point in an undistorted figure on
uuiform, nondirectional conducting paper.

As a check on the overall accuracy of the procedure, values of the
integrals were calculated for a typical cross section by the iterative
procedure of reference 10”and compsred with those measured with the
electrical analog. The difference
1 percent.

RESULTS AND

The values of j, q, and c
to (n) for the calculation of the

between the two values was less than

WPLICATIONS

maybe used directly in equations (6)
elastic constants associated with the

“

twistkg and shearing of plates with simple longitudinal or transverse
integral stiffening. For plates having combined longitudinal and trans-
verse or symmetrically skewed ribbing, values of # and q may be used
h equations (l$?)snd (13) to calculate corresponding value of the param-
eters a’ and p’ for use in the elastic-constantformulas of refer-
ence 4.

Evaluation of

Evaluation of J.- Check tests

Coefficients

performed in the”kngley structures

research laboratory in conjunction with this investigation have shown
that the method of reference 8 gives accurate results only when

<ltitwss2-
%/%’ = P

The following formulas, which can be derived

by use of reference 8, should therefore be used only when rw S= 1
P

and ~/tSS 2:

(24)

-.

b
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where

and

a ‘w= o.og4 + o.070—
ts

u

(25)

__k+a%k+@d. (26)
‘s ~~+1

‘s

The results of reference 9 were found to agee closely with the
check tests previously mentioned. Reference 9 presents torsional
constants (designatedherein as K’) for the configuration shown in
figure 6(a), in which Zs = ts snd Zw = tW. The results of refer-

ences 8 and 9 and extrapolations of each of these sources are presented
graphicslllyin figure 6(b) for integrally stiffened plates of the pro-
portions shown in figure 6(a). The ex&apolations were partly guided
by the experimental data from the check tests.

Ihasmuch as the curves of figure 6(b) apply to only the config-
uration shown in figure 6(a), the torsional stiffness of any additional
skin or rib height must be accounted for separately. Since the addi-
tional skin or rib is remote from the juncture, the stress distribution
at the juncture will not significantly affect the distribution in the
remote portions of the section; therefore, the additional torsional
stiffness is approxhat,ely that of a rectangular section. The torsion
constant K for any section
of the section shown in fig.
tangular sections; thus

is then the sum of K’ (the torsion constant
6(a)) and the torsion constants of the rec-

The relation between K and
imental data sre available,

(27)

j is given in equation (15). When exper -
j maybe canputed directly as

s %= (28)
GtS3 b2W

ax ay



12 NACA TN 3443

.
Evaluation of q and c.- The values of the shearing and coupling .

effectiveness coefficients q and c determined by the electrical.analogy .
are given in table I for a wide range of proportio~ of rectangular ribs ‘- -
with circular fillets. Also included in table I are the corresponding
values of the parameter ~~ of reference 4.

Values of q and c are presented in figures 7 and 8 as plots of

%/%s Zs bS rw
—.

q
— and qC

2 +kJ agabst q“
The curves apply only when the

values of both bS/tS and

largest values of these two
given values of r~~ts and

may be made because, beyond

bw/ts are equal to or greater than the

persneters which appear in the table for the
tW/tS under consideration. These plots

certain Mmits (the maximum values of b.#tS

and bW/tS appearing in table I for the rw/tS and ~/ts und~ con-

)sideration , additional.rib height or additional plate length between
ribs will not affect the stress distribution at the juucture of the skin
and rib.

Interpolationmsy be made by cross-plotting when a
ratios fall within the range of values presented in the

When b@tS is found within the table but bW/tS

range of the table, the values of q and c appearing

set of dimension
table.

lies beyond the

under the largest
value of bw/tS for the b@tS being considered maybe used. However,

the value of p’ must then be computed from equations (u) and (14) by
using the actual value of bw/tS. When bw/tS is found within the table

but b@tS lies beyond the range of the table, the value of q for the

largest value of %/-% for the velue of

in equation (18) to obtain a value of S1.

the value of q was found must be used in

computed. me value of S1 thuE obtained

~/tS betig considered is used

The value of b#tS for which

equation (18) when S1 is

is then used in equation (18)

with the required values of b#tS sad 3S/tS to obtain the desired

values of q. This value of q may thenbe used in equation ().3)to
compute ~~. A similsr scheme is used to find the value of c. That is,
the value of c fomd in the table corresponding to the value of the b~/tg

.-

b
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under consideration and the M@est Value of b@S aPPearing for that

value of b@s, together with the value of S1 previously obtatied~

are used in equation (19) to compute S2. The values of S1, S2, and

the dimension ratios being considered are th~used in equation (19) to
compute c.

The ranges of the dimension ratios cov~ed by the table snd curves
are :

Ratio Range

Rib thickness/Skinthichess, ~/tS . . . . . . . . . . . . . . 0 to 4

Fillet radius/Skin thiclmess, rW/tS . . . . . . . . . . . . . . 0 to I-6

Length of repeating ekments/Skinthiclmess, bS/ts . . . . . . 0 to m

Rib height/Skinthickness, bW/tS . . . . . . . . . . . . . . . 0 to ~

An additional result incidental to the evaluation of q and c
is that, for values of r@S >1, no shear stress concentration exists

in the cross section. (Stress-concentrationfactors were based on au
average shesx stress in the skin at a rm.ote unaffected distance from
the Juncture of the skin and ribs.) No investigation of the stress
concentration when rW/tS < 1 was pursued.

Illustrative Exsm@es

In order to illustrate the method of obtainimg the effectiveness
coefficients and their significance, the effectiveness coefficients j,
q, and c sxe calculated for the rib proportions used in the tests of
reference 3 snd one variation of that shape.

The dimensions of the rib cross section used in reference 3 are:

bs = 1.00 in. ts = O.g in.

~ = 0.10 in. ~=0.20 in. rW=O.10 in.

The dhension ratios sxe then

t~/ts = 2

bS/tS = 20
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bW/tS = 4

rw/tS = 2

These dimension ratios are considered In the ftist exsmple. The second
example considers the same dimension ratios except that the value of
r~/tS is changed from 2 to O.

t~ rw
Example 1.- Mom figure 6(b), for — = 2 and — = 2,

t~ tcJ

4
r K’
— = 2.2
‘s

Therefore,

K’ = 23.4t$

From equation (~) the torsion constant K is determined as

K= 23.4t$ +$(14 .2)t&; (2 -2)(2 ?t~4=27.4t~4

T& effectiveness coefficient J can now recomputed from equation (25)
as

27.4*S4
J= = 0.685

2(20)t~4

The value of bS/tS is larger than the largest value of b@S which

appears under tw/% = 2 and rw/tS =2 in the table, and ~/tS is

equal to the largest value of bw/tS which appears under
‘w/ts =2 and

rW/tS = 2. Figures 7 and 8 are therefore used to obtain values for q

%/% ‘sand c. From figure 7, the value of, ~ -
25

for rW/tS = 2 and

iyJps = 2 is found to be 4.0. Hence

%

●
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m?

15

9

.

q = l.u.l

bS
mom figure 8, — c is found to be 2.10,or

t~

Using the
gives the

The value
values of

above values of
values of Dk,

inequtions (6), (7), and (8)
fOllows:

‘k = 42.8 X 10-6G

$ = 0.0555G

c~ = - 0.00525

of u~ is found from equation (12) by
j and q previously found:

substitution of the

= 0.3225

0M6

The value of j3’ is then found from eqyation (13) as

~“ - In this exemple, a configuration having the following
proportions is considaed:

%/%

bw/%

=2

= 4

b#s = 20

w% = o
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The value of J may be found by meam of equation (24) or from fig-
ure 6(b) and equation (1~} to be

L-1= 0.436

From figures 7 and 8, q and c are found to be

q = 1.031

and

c s 0.032

The values of Ilk, ~, and Ck are then found from equations (6), (7),

and (8) to be

Dk = 27.30X 10-6G

q = 0.05155G

~k=- 0.00160

lRromequation (12),

From equation (14),

a’ = 0.424

‘w— = 0.40
bsts

The value of ~‘ is then found from equation (13) to be

p, = 0.0775

The values of u’ and ~’ fotmd in these two exsmples could have
been used in the formulas of reference 4 to obtain the elastic con-
S~tS Dk, ~, and Ck. The values of ~ and ‘k so obtained would

be exactly those values obtained by using the effectiveness coefficients j
and q in equations (6) and (7). The values of Ck obtained from the

formulas of reference 4, however, are found to be somewhat greater than
those computed directly by use of the coefficient c.

.-

b
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.

. This discrepancy, which disappears when ribs of small twisting
stiffness sre considered, arises as a result of the assumption of refer-

. ence 4 that the she~ing effectiveness of the ribs can be represented
. by a substitute sheet of zero twisting stiffness. There is no corre-

Spondtig discrepancy in the CalCU&3tiOn of Ilk,however, SiIICein ref~-

ence 4 the location of the substitute sheet (measuredby cL’H)is chosen
to give the correct value of twisting stiffness for the stiffened plate
as a whole. If a value of a’ is destied which will give the correct
value of the coupling term Ck, that value of a’ may be obtainedby

eqgating the expression of reference 4 for Ck to that of the present

paper and solving for al. That
sion for cc’:

a’ =

procedure leads to

% q

()T-C

T-hisVsme of a’ would give correct vslues of Ck

servative values of Ilk.

Discussion of illustrative examples.- The most

the following expres-

(29)

but somewhat con-

signific-t implication
of the results of this evaluation of the effectiveness coefficients is
that relatively small changes in detailed proportions can appreciably
affect the overall effectiveness of integrally stiffened plates. As dan-
onstrated in the examples, a change in fillet radius from ~/tS = 2

to rW/tS = O decreased p’ (~’ is apsramet= which shows the effi-

ciency of the rib in resisting shear) by a factor of 0.339 and decreas~
the twisting stiffness by a factor of 0.687.

More ccmplete analysis will be reqtied to evaluate fully the merits
of large fillet radii and the effect of changes in the other proportions.
Results of buckling tests of plates with fairly lsrge fillet radii, such
as those of reference 3, should not be considered representative of the
results to be expected for similsr plates with small fillet radii.

Suitably proportioned longitudtial or transverse integral st~fening
csn etidently contribute to the shear stiffness of plates; thus integral
stiffeners may be utilized to contribute to the torsional stiffness as well
as to the flexural stiffness of wing panels.

--

.



18 NACATN 3443

CONCLUDING REMARKS

The evaluation of the shearing effectiveness of Lntegral stiffening
for a wide range of proportions of rectangular stiffeners with circular
fillets has indicated that the degree of penetration of stresses from
the skin into the stiffeners is in part dependent upon the fillet radius.
Also, for fillet radii greater t@n the skin thickness, the shear-stress-
concentration factor has been found to be equal to unity. Determination
of the overall structural @portance of the fillet radius sad the effect
of chsmging other proportions require and, on the basis of the large

, changes in stiffness associated with small changes in configuration shown
in the present study, deserve further investigation.

.

.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., March 3, 1955.

-.

.

,
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ANALYSIS OF

OR

APPENDIX

SHEARING EFFECTIVENESS OF I&)NGITUDIWiL

l?RANSVERSEINTEGRAL STEFEKUW

Figure 3 shows the repeating element of a plate with integral
unidirectional stiffeners. A quasi-shear s~te of deformation has been
imposed upon the element so that the edge a~ has undergone a pure
shear translation with respect to the edge bc. The problem is to
determine the stresses necessary to maintain the imposed deformation.
The ratio of the resultants of the stresses to the magnitude of the
assumed distortion provides an index to the effectiveness of integrally
stiffened plsbes in resisting shearing forces.

Derivation of Differential Equation Governing Stress Function

The semi-inverse methcd of Saint-Vensnt, as found in reference 5

(PP. 259-263), iS the approach used for this problem. Plane sections
parallel to the yz-plane before distortion are assured to have their
shape preserved, but these planes may warp in the x-direction. This
warping is the s“amefor all cross sections along the x-axis. Displace-
ments u in the x-direction of points in cross sections parallel to the
yz-plane canbe defined by a w~ing functicn,

u= *(Y,Z)

Since the shape of the cross section is preserved,
the y- and z-directions (v and w), respectively,

Vaw. o

(Al)

the displacements in
are

(A2)

The components of strain are therefore calculated from the relations
between strains and displacements as

>
=x =~y=~z=yyz=o

Yxz = g

&

7~ ‘by

(A3)
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stresses cam then be calculated as

@ = % =Gz= Tyz = o

Txz = ~~

TW =G$
1

a stress function @ = @(Y,z) from which~ shear

(A4)

stresses 7= and T= Tk& equations of equilibriumare obtainable. ‘ ‘-
given on page 229 of r=ference 5 must be satisfied. Only one of the
three equations of equilibria is of significance,

% : %y .

EIZ by

The stresses ‘Xz and Tw may then be

stress function @ = #(y,z); thus

o

expressed

1

Equating the stresses determined in equations (A4)
in equations (A6), so as to determine the stresses
of displacements and thereby automatically satisfy
strains, yields

.X=ix!
az ay

~$=.gj 1

namely,

(M)

in terms of the

(A6)

to those determined
from a consideration
Capxti%ility of

(A7)

The w~ing function W maybe eliminated fro.mequations (A7) by
differentiating both sides of the first of ec!uations(A7) with remeet
to y and both
the second from
that the stress
equation

sides of the second tith res&ct to z ‘&d subtra~ting
the first. Elimination of the warping function shows
function $ must satisfy Laplace’s differential

.
.

.“

.

(A8)
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Stresses obtained
the conditions of

from tie solution of this differential eq-tion satisfy
equilibrium and compatibility.

.

Determination of Boundary Conditions

The stresses norml to tie boundaries ~ and ~ of the element
must be zero because these boundaries represent tie stress-free surfaces
of the repeating element. (See fig. 3.) The values of tie stress
function along these two boundaries must therefore be constant in order
that the stresses normal to these boundaries q be zero. ~=
is arbitrari~ set at the constant value of zero, and boundary ~
is arbitrarily set at the constant value of P. The physical signifi.
cence of this choice of boundary conditions may be seen by coasidertng
the integra33y stiffened plate to be a fls,tplate. Then,

.-

●

is tie solution to equation (A8). lhus,

P
‘xy = -~

or

%
= Tvts = -P

Therefcme P is the magnitude of tie applied
length.

Along the boundaries ~ and ~,
to be constant. The shear strain Y=
-by

(A9)

(Ale)

(All)

shear force per unit

the displacements u are assured
along tiose boundaries is given

= o (m)

The shear stress rn along those boundaries is therefore calculated
to be zero, or

Y= TXZ=O
by

(A13)

along boundaries ~ and ~. me ass-tion that TX = O a10?3g

boundaries ~ and ~ could have been made from consideration of
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the fact tiat the boundaries are lines of symetry for the stress
function, and therefore ~~/~y = O at these lines of symmetry.

The problem has now been reduced mathematically to solving equa-
tion (A8) subject to the boundary conditions:

@= Oalong ZG
)

@= Palong~
I

(U4)

which are included in figure 2.

Determination of Resultant Forces

The resultant forces (see fig. 4) necessary to maintain the assumed
state of deformation can now be determined in terms of the stress
function @ = @(yjz).

-.

When these forces and the distortions produced
by them are determined, the elastic constants can be obtained in terms
of the stress function. ●

D.Ithe plane y = bS/2, the shear stresses may be resolved to

a resultant shearing force Fn per unit length, acting at the midplane
of the skin, and a torque ~y per unit length. Equations (A6) and

the bounda& conditions
in the plane y = bS/2

Fyx

and

(eqs~--(A14)) are used to determine the forces
as follows:

ts

()%x=f (’d y=bs,p ~ - z ‘z

=:f Jga ‘s )Pts o %=bs/2dz

(M.5)

(A16)
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.-

&!

.

.-.

h a like manner, the resultant forces on the yz-plane sre obtained as

(M-7)

and

(u8)

‘where h is the z-distance from the y-axis to the boundary ~.

Derivation of Formula for q

The relative shear dis@acement 5 of P- ~ at Y ‘,bS/2

with respect to plane m at y = -bs/2 a% any ~1~ of z ~e~een
O and tg is given by

J
bS/2

6 = 7#Y (o~zsts) (U9)
-bs/2

Frm this equation, equations (A6), and the stress-strain relation-
ship TV = G7W> b becomes

& U’lZ bs/2%dy dz (o~z~ts) (A20)=-—
Gz O -b~/2 32

The average shear strain uver * length of the repeating element
is given by

(Ml)
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equation (A17), F= = Fyx = -P; therefore, each of these
..

fdrces can be replaced by the more conventional notation Nm.

The coefficient q, which represents the
stiffener in resisting she-, can now be

effectiveness of the
defined as follows:

integal” .
u

(A22)

Substitution from equation (A15) or (A17) for Nw and from equ&-

ti.on(A21) for ZW in equation (A22) yields the-coefficient q in

the following form:

(A23)

Noting that

(see fig. 2) and
permit q to be

expressing the dimensions as dimensicmless ratios
obtained in the fom

●

(A24)

Derivation of Formula for c

The resultant torques ‘w ‘d %x necessary to maintain the

assured state of defcnmation are defined in terms of two coeffi-
~andqasci.cuts CT

yx

‘w = “TwtSNxy

%x = -c%xtsNw

(A25)

(A26)

The torques are negative if NW is positive. This can be seen by

comparing Fyx of equation (A15) and %x of equation (Q6). l%rom

equations (A17), (A18), and (A25), CTW is obtained as
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..

similarly, is obtaiqed frm equations (NT) , (A18), and (A26) as
cTyx

(A28)

b order that these results msy be incorporated in flat-pkte theory,
the twisting mcments on adjacent sides of a repeating element must be
equivalent. The distributed

concentrated lateral forces
as is done in reference 11.
then replaced by ~ where

moments TW

‘w ‘d %x
The resultant

.

% = $(%+ %J

and %x maybe replaced by

at the corners of the plate

torques ‘w ‘d %x ‘e

(=9)

This system is statically equivalent to the actual system. It therefore
prduces essentially the same distortions as the actual system except in
regions at the edges of the plate comparable in width to the thiclmess
of the plate. This result follows from Saint-Venant~s principle (see
ref. 5, p. 33). The resultant torqu ~ is therefore defined in
terms of a coefficient c as

where

c =

From equation

1 J’
bS/2

~ -bS/2

(A31)
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Rearranging equation (A32)
skin yields

t~ bs/2

ffo -bS/2

T!hus,in finding the value

MCA m 3W3

and integrating over the thiclmess of the

.
.

(A35)

of a double integral of ‘the@-surface over
the area of the element, only the integral over the attached stiffener
need be found, since the integral over the flat-sheet pert of the
element is found from just the line integral along the line Z=ts

over the length of the element.

Substituting equation (A33) into equation (A31), noting that @ =P

~ and nondimensionalizing‘S ~d rW+>~lyl~ZS+%+”2>when z =

yields

93/%3

!I!hus,the forces required to maintain the assumed state of deforma-
tion are knuwn in terms of two integrals:

and

These
means

.
●

two integrals are evaluated for the
of an electrical analog computer.

Determination of Elastic Constants

(A35)

fldzdy (A36)

cases

The elastic constant ~ is defined in
in equation (6) where “j is obtained by the
main text.

c

considered herein by

terms of the coefficient j
methods discussed in the
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The state of deformation assumed in the determination of the
coefficients q and c is characterized by

3%.0
ax by

(A37)

Thus, by setting the twist equal to zero in equation (1) and slib-
stituting frcm equation (A30) for ~, the elastic constant ~ is
obtained as

“

Ck = -cts

When the twist a%— is set equal to zero in equation
ax ay

as may be determined fkom equation (A22) is substituted

equation (2), the elastic constsnt ~ is

% = mts

l%om the relationships of equations (5)the

DW> ‘w> and T become

‘w = GjtS3

Gjqts
‘w = 2c% + j

T=~
GjtS2

obtained as

(A38)

(2) and ~=

for 7W of

(A39)

remaining elastic constants

(A40)

(A41)

(A42)

Determination of al and 13t in Terms of j and q

Reference 4 derived expressions for the elastic constants of
integrally stiffened plates in which the effectiveness of the ribs for
resisting twisting and shearing is expressed in terms of two param-
eters a’ and ~’. The coefficient ~’ represents the part of the
rib which is effective in resisting shesr when this part is considered
to be flattened out over the length of the element, thus increasing
the effective flat-plate thiclmess of the element. The relatim between
P’ and the applied shearing force ‘w is then
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NV=++ +)Y (A43)

Equating NW as obtained from equation (A22) to that as obtained in
equation (A43) results in the following relationship between pi and q:

.
.

—

pq-1 (A44)
AW/bStS

—

The coefficient a’ represents the height above the midplane of the skin
at which the centroid of the distributed fractional area of the rib is
located to produce the required twisting stiffness. By substituting
from equation (A43) for ~’ and from equatton (9) for DW in equa-
tion (93) of reference 4, u’ is determined in terms of j and q:

(A45)

..
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Figure l.- Integrally
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in imposed state of deformation.

~b~~

4.- Repeating element with resultant forces necessary to
imposed deformation.

maintain
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Figure 5.- Analog Field Plotter. L-83509



NACA TN 3443 35

I Oi

I_f~

t-
-J- —.

t~‘r-l
tp_

(a) Cross section of repeating element.

rw
&

8 )16
/~ /J

7
/’

/- /-
/-

I2
-~ /0

6
--

/ - -

/-
/“

5
/-

--
-- /’

/-
/“ /

/ /’

4 A A
/“ ~

/’ /

--
/-

//
/’ /’

/’ ,~/R
3

/- 0 /’
-—

-~
/H

/’ /“

/ /~/ /“

//’
2

/’
/ /“ /-

~ -
/H
— Ref. 9

1’
—- -

— Ref. 8
—— Extrapolated

o Experimental

o I 2 3 4

~

s

/
(b) Values of @ts.

‘@%Figure 6.-Values of ‘K’ for repeating element men

Slld Zw = t~.



36 lTACATN 3443

.

0 2 4 6 8 10 12 14 16

rw
~

Figure 7.- Values of %/% % bw bs
—- - 2 ~ when both ~ and ~ are larger

!l
than those values presented in table I.



63
NACA TN 3443

I

4

(

100.0

50.0

I0.0

5.0

i.o

.5

“’ o 2 4 6

Figure 8.- Values of
bs

~c
when both

values presented

-tS

in table

t~

4

3

2

I

o

37

.

10 12 14 16

bs
— are larger than those
ts

I.

NAcA-Ia@glOy -6-22-55. 1000


